Metamateriales

Los metamateriales son una nueva clase de materiales que poseen propiedades no observadas en la naturaleza. Es lo que promete un campo de investigación que puede ser crucial para la competitividad de las economías en el futuro.

Los materiales del futuro: metamateriales

Se trata de la nanotecnología, y de los nuevos materiales que ella ha hecho posible, los llamados "metamateriales".

Qué es la nanotecnología?

Nanotecnología es la ciencia de fabricar y controlar estructuras y máquinas con tamaños menores a un micrón.

Para comparar, el diámetro de un pelo humano es aproximadamente 50 micrones. Hoy en día, existen técnicas de nanofabricación que permiten elaborar estructuras con tamaño mucho menor que un micrón.

Un ejemplo lo pueden ver en la imagen que incluimos en esta entrevista (ver foto Nanocolumnas): es un conjunto de nanocolumnas que definen canales para separar moléculas de ADN. El diámetro de cada columna es de 300 nanómetros.

¿Qué son los metamateriales?

En general, se trata de compuestos ordenados cuyas propiedades físicas son distintas a la de sus constituyentes. Por ejemplo, el índice de refracción de un metamaterial puede ser negativo mientras el índice de refracción de las partes constituyentes es siempre positivo.

Algunos de ellos se fabrican con técnicas de nanotecnología similares a las que se usan para fabricar micromáquinas y circuitos integrados.

Una de las aplicaciones más popular de estos metamateriales, radica en la fabricación de lentes planos. En general, la forma de los lentes ópticos es lo que define sus propiedades y para algunas aplicaciones específicas la forma del lente es complicada de fabricar.

Una ventaja de los metamateriales es que con ellos se podría fabricar lentes planos que permitan enfocar luz en áreas muy pequeñas (más pequeña que la longitud de onda de la luz).

Mientras en un lente de vidrio, la forma y detalles de la superficie definen sus propiedades, en un metamaterial el tamaño de sus componentes define sus características.

¿Sólo pueden desarrollarse los metamateriales con nanotecnología?

No solamente. Hoy también se los fabrica usando microtecnología. Es importante poder fabricar artificialmente estos metamateriales con tamaños del orden de nanómetros a varios micrones, para poder diseñarlos para el uso que uno quiere.

Para aplicaciones ópticas, el tamaño de las partes que forman el metamaterial varían desde nanómetros hasta un micrón, mientras que para aplicaciones en comunicaciones se necesitan tamaños entre micrones a milímetros.

Con nuevas técnicas de nanofabricación, como las que estamos desarrollando en Bell Labs, se podrían fabricar nuevos metamateriales con propiedades totalmente inéditas.

Israel ha dicho que una de las prioridades de inversión en el campo de investigación será en el futuro la nanotecnología. ¿Por qué es tan importante para la competitividad de las economías?

Porque la nanotecnología permitiría fabricar nuevos materiales con funciones nuevas. Esto significa nuevas drogas, nuevos dispositivos para salud, seguridad, comunicaciones.

No sólo Israel está interesado en nanotecnología. Estados Unidos, Europa, varios países asiáticos y latinoamericanos tiene planes específicos para el desarrollo de la nanotecnología.

¿Además de en óptica permitir lentes mucho mejores, también los metamateriales abrirían nuevos campos en computación?

Alguna gente está pensando en usarlos en las llamadas computadoras ópticas, pero no hay ningún resultado serio por el momento.

¿Qué papel juega el cobre en todo esto? (Chile dijo que la demanda de cobre está aumentando extraordinariamente en el mundo)

Los primeros prototipos de metamateriales fueron fabricados usando cobre como material conductor.

Pero, en principio, cualquier material conductor puede ser utilizado. No creo que el aumento en la demanda de cobre se deba al uso de metamateriales.

Entrevista realizada por la BBC a Daniel López, investigador del Laboratorio de Nanofabricación de Bell Labs, de Lucent Technologies, con sede en Murray Hill, en Nueva Jersey, Estados Unidos.

Fuente: http://www.laflecha.net/canales/ciencia/noticias/200403101

Metamateriales

No existe una definición universalmente aceptada de metamaterial; en el sentido más amplio, se trataría de un material artificial que presenta propiedades electromagnéticas inusuales, propiedades que proceden de la estructura diseñada y no de su composición, es decir, son distintas a las de sus constituyentes. En un sentido más estricto, hay quien considera un metamaterial a aquél que constituye una estructura periódica, cuya dimensión máxima sea menor que la longitud de onda con la que vaya a trabajar. De esta manera, la estructura diseñada podría considerarse como una "molécula", y sus propiedades ser modeladas mediante parámetros globales, permitividad, permeabilidad, índices de refracción .... exactamente igual a como se hace con las moléculas presentes en la naturaleza. Algunos amplían esta definición incluyendo en la misma estructuras aleatorias (igual que en la naturaleza existen sólidos cristalinos, periódicos y sólidos amorfos) y también existe quien no considera la restricción del tamaño de la estructura, aceptando también como metamateriales a aquellos de dimensiones mayores que la longitud de onda (cristales fotónicos). Por el contrario, también existe quien restringe aún más esa definición, considerando como metamateriales sólo a aquellos que presentan coeficientes de refracción negativos (metamateriales "doble negativos" o "zurdos").1
Los metamateriales tienen una gran importancia en los campos de la óptica y del electromagnetismo. Muchos estudios que se llevan a cabo hoy en día van orientados al diseño de nuevos materiales capaces de tener un índice de refracción ajustable, la creación de "superlentes" que mejorarían drásticamente la calidad de las imágenes para el diagnóstico médico y otros usos.

RRefracción en un material normal y en un metamaterial doble negativo o "zurdo".


Metamateriales Electromagnéticos

Los metamateriales son de particular importancia en el electromagnetismo (especialmente en la óptica y la fotónica). Ellos presentan un considerable potencial para una gran variedad de aplicaciones ópticas y de microondas tales como nuevos tipos sistemas moduladores, banda de filtros de transición, lentes, acopladores de microondas, y antenas aleatorias.
Con el fin de que sus propiedades funcionen en frecuencias del orden de las ondas electromagnéticas, los componentes estructurales de un metamaterial deberían ser, en principio, más pequeños que la longitud de onda de la radiación electromagnética con la que interactúa. Así, podríamos aproximar su comportamiento en esas frecuencias al de un material homogéneo, descrito con precisión por un índice de refracción eficaz. Para la luz visible, que tiene longitudes de onda inferiores a un micrómetro (560 nanómetros para la luz solar), las estructuras deberían ser del orden de la mitad o menos de la mitad de este tamaño, es decir, menos de 280 nanómetros. En frecuencias de microondas, las estructuras sólo deben ser del orden de un decímetro.
Los metamateriales por lo general consisten en estructuras periódicas, y, por tanto, tienen muchas similitudes con los cristales fotónicos; de hecho, muchos autores incluyen estos últimos dentro de la categoría de metamateriales. Sin embargo, los cristales fotónicos constan de estructuras de tamaño superior a la longitud de onda en la que funcionan, y, por tanto, su comportamiento no puede aproximarse al de un material homogéneo efectivo.


Modelos Teóricos

J. B. Pendry fue el primero en teorizar una forma práctica de hacer un metamaterial zurdo (LHM). "Zurdo" en este contexto significa un material en el que la "regla de la mano derecha" no es obedecida, lo que permite que una onda electromagnética transmita energía (con una velocidad de grupo) en la dirección opuesta a su velocidad de fase. La idea inicial de J. B. Pendry, era que una distribución de cables metálicos alineados a lo largo de la dirección de propagación de la onda dan lugar a una permitividad efectiva negativa (ε <0). Sin embargo, existen materiales naturales (como Ferroeléctricos) con permitividad negativa: el reto era construir un material que tuviera al mismo tiempo una permeabilidad negativa (μ <0). En 1999, Pendry demostró que un anillo (en «C») con el eje a lo largo de la dirección de propagación podría proporcionar esa permeabilidad negativa. De esa manera, una distribución periódica de esos cables y anillos podía dar lugar a un índice de refracción efectivo negativo.
La analogía es la siguiente: Los materiales naturales están hechos de átomos, que se polarizan en presencia de campos electromagnéticos. Los dipolos así formados pueden modificar la velocidad de la luz por un factor "n" (el índice de refracción). El anillo de alambre y los cables desempeñan el papel de dipolos atómicos: el cable actúa como un átomo ferroeléctrico, mientras que el anillo actúa como un inductor "L" y la sección abierta como un condensador "C". El anillo en su conjunto, por lo tanto, actúa como un circuito "LC". Cuando el campo electromagnético pasa por el anillo, se genera una corriente inducida, que da lugar a un campo perpendicular al incidente. A la frecuencia de resonancia del anillo, el resultado equivale a una permeabilidad negativa, y así el índice de refracción es también negativo.

Fuente: http://es.wikipedia.org/wiki/Metamateriales

Archivo adjunto

  • Las insolitas propiedades opticas de los metamateriales.pdf
    View Download
  • ANÁLISIS, DISEÑO Y PROTOTIPADO DE UNA LENTE PLANA BASADA EN ESTRUCTURAS METAMATERIALES PARA ANTENAS.pdf
    View Download

  • Contador de visitas
    frontpage hit counter